Troop 89 Medfield Website

Aug 20, 2019

Contents:

Installing the Troop 89 Website

1.1 Fetching the Source
1.2 Installing the Dependencies
1.3 Compiling the Stylesheets
1.4 Adding the Configuration File . . .
1.5 Initializing the Database
1.6 Populating the Database
1.7 Creating the Django Superuser . . .
1.8 Collecting the Static Media
1.9 Updating Local Hostnames (Optional)
1.10 Running the Server
Running the Tests

Contributing to the Troop 89 Website

3.1 How CanlI Contribute?
32 ReportingaBug
3.3 Requesting a Feature
3.4 Making a Pull Request
How to Maintain the Troop 89 Website

4.1 Accessing the Adminsite
4.2 Posting Announcements
43 Creatingevents
4.4 Creating and editing static pages . .

Notes to Webmasters

5.1 Repository Structure
5.2 External Services

Deployment Considerations

6.1 Django Settings Module
6.2 Initializing the sitesapp.
6.3 Database Configuration
6.4 Redirecting Traffic to HTTPS . . .

L b bW ww

Troop 89 Medfield Website

The troop89medfield.org is the official website of the Boy Scouts of America’s Troop 89 Medfield, a member of the
Mayflower Council.

The Troop 89 website is powered by Django, a Python web framework.

This site intended to be designed and maintained by the youth members of Troop 89.

Contents: 1

https://www.troop89medfield.org
https://www.scouting.org/
https://www.mayflowerbsa.org/
https://www.djangoproject.com/
https://www.python.org/

Troop 89 Medfield Website

2 Contents:

CHAPTER 1

Installing the Troop 89 Website

Note: This guide assumes that you already have Python installed. At the time of this writing, the troop 89 website
requires Python 3.6 or greater.

Getting a local copy of the troop 89 website running is a fairly simple process, though there are several steps. This
guide is intended to be especially detailed so that it may serve as a partial reference for future webmasters in training.

1.1 Fetching the Source

The easiest way to get a copy of the troop 89 website source is by cloning the public github repository. This has the
added benefit of integrating git into your development environment, which will be necessary if you intend on making
changes to the website’s source.

$ git clone git://github.com/blueschu/troop89medfield.org.git
$ cd troop89medfield.org

If you are planning on submitting contributions to the website via a pull request, you should begin by forking the
repository and then cloning that repository instead.

1.2 Installing the Dependencies

You will need to create a virtual environment for Python libraries. If you are using Python3.6+ (which you should be),
the tools needed to create virtual environments ship with the interpreter as the venv module.

Note: Third party packages for creating virtual environments also exist. Some popular options are the virtualenv
and virtualenvwrapper packages, which preceded the standard venv module and provide additional convenience tools.

https://github.com/blueschu/troop89medfield.org
https://git-scm.com/
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/fork-a-repo
https://docs.python.org/3.6/library/venv.html
https://pypi.org/project/virtualenv/
https://pypi.org/project/virtualenvwrapper/
https://docs.python.org/3.6/library/venv.html

Troop 89 Medfield Website

Both of these packages can be installed with pip, and can be freely used inplace of the venv module in the following
instructions.

To install the site dependencies, execute the following:

$ python3 -m venv troop89_venv # Create a virtual environment in the folder
— '"troop89 venv'

$ source troop89_venv/bin/active # Active the virtual environment

$ pip install -r requirements/dev.txt # Install the development dependencies

On Windows, run venv\Scripts\activate.bat in place of source troop89_venv/bin/active.

1.3 Compiling the Stylesheets

The stylesheets for our website are written in sass, an extension language to css. You can either install sass system
wide, use a feature in your IDE (if one is offered), or you can use the Python libsass package. Regardless of what
method you use, you want to compile all the files in assets/scss/*. scss that don’t begin with an underscore to
assets/css/.

If you have already installed the site dependencies (/nstalling the Dependencies), you will have the libsass package in
your virtual environment, which provides the sassc utility. With this program on your path (which will be the case
if you have activated the virtual environment), you can run the following script to compile the stylesheets.

’$./bin/build-scss.sh

1.4 Adding the Configuration File

You will need to create a file called . secrets. json in the root directory of the project sources. This is a config file
that stores sensitive information such as database credentials and encryption keys.

An example configuration is located in the demo . secrets. json file, which you can temporarily copy to get the
site running:

$ cp demo.secrets.json .secrets.json

This file includes the credentials for an SQLite database, which is a single-file based relational database that ships
with Python. Before beginning significant development, you should install and configure a PostreSQL database (for
which the site is designed) and substitute its credentials into . secrets. json. See Database Configuration for
more details.

1.5 Initializing the Database

Assuming all configurations are good, you should only need to run

’$./manage.py migrate

This will create the necessary tables and relations, but will not populate the database with data.

4 Chapter 1. Installing the Troop 89 Website

https://docs.python.org/3.6/library/venv.html
https://sass-lang.com/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://sass-lang.com/libsass#python
https://sass-lang.com/libsass#python
https://docs.python.org/3/library/sqlite3.html
https://www.postgresql.org/

Troop 89 Medfield Website

1.6 Populating the Database

The Troop 89 website ships with some default data to populate the database. This data is provided using Django
fixtures, which are contained in the fixtures directory.

To load the default hostnames for the d jango.contrib.sites app, run

’$./mange.py loaddata ./fixtures/sites.json

To load the demo flatpages, run

’$./mange.py loaddata ./fixtures/demo_flatpages. json

1.7 Creating the Django Superuser

Run the following command

’$./manage.py createsuperuser

and follow the prompts. This will create a user instance in the database that has all possible site privileges. You will
need this to access the site admin.

1.8 Collecting the Static Media

Simply run

’$./manage.py collectstatic

This will collect the static files and media from across the project into a single directory (. /static/) so that they
can be served by the web server. See the django staticfiles docs for more information

1.9 Updating Local Hosthames (Optional)

If you would like to use a host name (e.g. troop89.localhost) in place of a numeric IP (e.g. 127.0.0.1) when accessing
the development site, you will want to update your machines hostname configuration. For Unix system (MacOS,
Linux, etc), add the following entry to your /etc/hosts file:

127.0.0.1 troop89.localhost

Note that the . localhost TLD is reserved for loop back addresses of this sort. In fact, some browsers will treat
.localhost domains as loop back addresses even without a DNS configuration or modified /etc/hosts file.

1.10 Running the Server

Warning: The following instructions are for development only. For production, a fully fledged HTTP server
such as Apache or Nginx should be used in place of the lightweight server that ships with Django. See the Django
runserver docs for more information.

1.6. Populating the Database 5

https://docs.djangoproject.com/en/2.2/howto/initial-data/#providing-data-with-fixtures
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/
https://tools.ietf.org/html/rfc2606
https://docs.djangoproject.com/en/2.2/ref/django-admin/#django-admin-runserver
https://docs.djangoproject.com/en/2.2/ref/django-admin/#django-admin-runserver

Troop 89 Medfield Website

To run the testing server, simple run

$ export DJANGO_SETTINGS_MODULE=troop89.settings.dev # Use the development settings.,
—Run once per session.

$./mange.py runserver

If you updated your hosts files to include a local hostname, you can run the following instead

$./manage.py runserver troop89.localhost

Do note that by default, the production setting will be used (as defined in t roop89/wsgi . py). To run the develop-
ment flavor, set the environment variables DJANGO_SETTINGS_MODULE to troop89.settings.dev. This can
be done by modifying your ~/ .bashrc file (to set it every time you begin a new bash session), by running export
DJANGO_SETTINGS_MODULE=troop89.settings.dev in your terminal (as in the commands above), or by
preceding the run server command itself with DJANGO_SETTINGS_MODULE=troop89.settings.dev.

6 Chapter 1. Installing the Troop 89 Website

CHAPTER 2

Running the Tests

The unit tests for the troop 89 website are pretty sparse at the moment. Contributions are always welcome!

Unit tests can be run via Django’s test runner

$./manage.py test

To speed-up the tests by running them in parallel, you can pass the ——parallel flag. To preserve the testing database
after the tests run, you pass the ——keepdb flag.

For more information, see the Django testing docs.

https://docs.djangoproject.com/en/2.2/topics/testing/overview/

Troop 89 Medfield Website

8 Chapter 2. Running the Tests

CHAPTER 3

Contributing to the Troop 89 Website

3.1 How Can | Contribute?

Members of Troop 89 are welcome and encouraged to contribute to the website in any way that they can. Com-
mon ways to contribute include Reporting a Bug that you found or Requesting a Feature to be implemented by the
webmasters.

All members of Troop 89, particular those holding leadership positions such as Historian or Scribe, are welcome
to submit content to be published on our website. If you are interested contributing in this way, please contact our
webmasters over email or during a weekly meeting.

Scout who are interested in exploring the fields of web design, computer science, graphic design, or any of their
relatives are encouraged to help with the maintenance of the troop’s website. Possible ways to contribute include:

* Improving the presentation of our website by modifying the stylesheets
* Creating artwork or media to be posted to our website

* Developing new features for the website with the Django framework

3.2 Reporting a Bug

Bugs are tracked with GitHub issues. Before reporting a bug, be sure to check if it has already been reported by
searching the existing issues on GitHub. If no report exists, go ahead a submit a new issue.

When submitting a report, be sure to include sufficient details for our webmasters to replicate the problem:
 Use a clear and descriptive title for the issue to identify the problem.
* Describe the exact steps to reproduce the problem with as many details as possible.
 Explain the behavior you expected to see instead and why.

When reporting a bug that affects the visual appearance of the Troop 89 website, please also provide details about how
you are accessing the website. Specifically, please note what browser you are using along with any details about your
system that may be relevant to the issue, such as Ad-blocking software.

https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.djangoproject.com/
https://guides.github.com/features/issues/
https://github.com/blueschu/troop89medfield.org/issues
https://github.com/blueschu/troop89medfield.org/issues/new

Troop 89 Medfield Website

You may also consider submitting a patch for the bug by Making a Pull Request.

3.3 Requesting a Feature

Enhancements requests are also tracked with GitHub issues. As with bug reports, please provide a clear and descriptive
title that identifies the request. Be sure to explain the desired behavior of the new feature and how it would benefit the
Troop 89 website.

3.4 Making a Pull Request

Contributions to the Troop 89 website should be submitted as a pull request on GitHub. The basic workflow for
contributing a change is as follows.

1. Fork the Troop 89 Website repository.
2. Clone the fork repository to your machine.
3. Commit changes to a new feature branch.
4. Push your changes to the fork repository.
5. Submit a pull request to merge your work into the Troop 89 website.
This repository uses branching conventions that are adapted from A successful Git branching model:

¢ New features branches should be named feature/your—-feature-description and should be based
off of the development branch

* “Hot fixes” should be named hot fix/v{SEMVER} where { SEMVER} is the semantic version of the latest
release with the patch version incremented. Hotfix branches should be based off of the master branch.

Commit messages should adhere to these general guidelines.

All Python code should adhere to the standard style guide for Python code (PEP 8).

10 Chapter 3. Contributing to the Troop 89 Website

https://guides.github.com/features/issues/
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/pushing-to-a-remote
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://nvie.com/posts/a-successful-git-branching-model/
https://semver.org/
https://chris.beams.io/posts/git-commit/
https://www.python.org/dev/peps/pep-0008/

CHAPTER 4

How to Maintain the Troop 89 Website

This document outlines how to maintain the Troop 89 website without any coding or web design experience. If you
are interested in contributing to the website’s source code, please see Contributing to the Troop 89 Website.

4.1 Accessing the Admin site

Link: The Troop 89 admin site.

Most management of the Troop 89 website can be accomplished within the customized admin site. If you are already
logged in to the Troop 89 and have been granted access to the admin site, you should be able to access it by the link
listed above. If you unable to reach the admin site and believe that you should have access, contact a webmaster.

4.2 Posting Announcements

From the admin site, navigate to Troop Announcement | Announcements | Add Announcement.

In the announcement creation form, provide a title, a date of publication, and some content for the announcement.
Currently, announcements can be written in either plain text or Markdown. For a brief tutorial on how to stylize
writing with Markdown, see GitHub’s Mastering Markdown guide. In the future, a rich WYSIWYG editor may be
provided for announcement creation, such as the one available for flatpage creation.

Advanced

At the bottom of the announcement creation form, you will find a collapsed fieldset title “Advanced”. Expanding this
fieldset will give you access to two additional fields: the user, and the slug.

The user field determines the person who is displayed as the author of a post. Note that this is separated from the
system that records actions in the admin interface: the users responsible for creating and editing an announcement will
be visible in the changelog.

11

https://www.troop89medfield.org/admin/
https://www.troop89medfield.org/admin/
https://daringfireball.net/projects/markdown/
https://guides.github.com/features/mastering-markdown/

Troop 89 Medfield Website

The slug field determine the url that the announcement can be accessed with. By default, this field is generated from
the the announcement’s title, but you may wish to edit it in some circumstances to create a more expressive url.

After saving your announcement, you can view it on the live site by either navigating to the homepage or clicking the
“View on Site” buttom in editing form.

4.3 Creating events

From the admin site, navigate to the Events | Events | Add Event.

In the announcement creation form, provide a title, type, description, and start and end time for the event. Currently,
event descriptions can be written in either plain text or Markdown. For a brief tutorial on how to stylize writing with
Markdown, see GitHub’s Mastering Markdown guide. In the future, a rich WYSIWYG editor may be provided for
announcement creation, such as the one available for flatpage creation.

For information on how to create a report for an event, see Creating an Event Report.

Advanced

At the bottom of the event creation form, you will find a collapsed fieldset title “Advanced”. Expanding this fieldset
will give you access to one additional fields: the slug.

The slug field determine the url that the event can be accessed with. By default, this field is generated from the the
event’s title, but you may wish to edit it in some circumstances to create a more expressive url.

4.4 Creating and editing static pages

The management of static or “flat” pages is handled by our custom flatpage app.

Navigate to the Flat page listing in the admin to view the page currently available on the site. From there, you may
search for a page by title in the search box, filter what pages are shown by their parent page, or sort the pages by url or
title.

To create a new flat page, click the “Add Flat Page” button in the top right corner of the page. In the flat page creation
form, provide a URL, title, and rich body for the new page.

Take particular care when picking the URL for the new page. The URL that you provide will be used to determine
where your new page should be displayed on the site. For example, a page with the URL /about/squirrels will
be listed as a subpage on the /about/ page and will visible as a related page on the /about /chipmunks page.

Advanced

At the bottom of the flat page creation form, you will find a collapsed fieldset title “Advanced options”. Expanding
this fieldset will give you access to two additional fields: a “registration required” checkbox, and a template name.

If selected, the “registration required” flag will restrict access to the flat page to users who are logged in to the website
with a Troop 89 account. The page will not be listed for users who are not logged in to the site.

The “template name” field specifies the Django template from source control to use to render the page. This field
defaults to flatpages/default.html. You should only edit this field if you need to heavily customize the
rendering of your flatpage, such as loading a custom template tags or querying additional data from the database.

12 Chapter 4. How to Maintain the Troop 89 Website

https://www.troop89medfield.org/
https://daringfireball.net/projects/markdown/
https://guides.github.com/features/mastering-markdown/

Troop 89 Medfield Website

4.4.1 Creating an Event Report

Event Reports are a specific type of flat page that can be automatically generated from an Event.

To create a new Event Report, navigate to the event you intend to describe in the calendar. On the event’s detail page,
you will find a large button underneath the navigation toolbar that says “Create an Event Report”. If you cannot see
this button, you likely do not have permission to post new flatpages.

After clicking the “Create an Event Report” button, you will be redirected to a form that is prepopulated with informa-
tion to create a flatpage from the event’s details. From here, write the content of your report for the event in the space
provided.

Be sure to save your report before closing the page.

4.4.2 Updating the newsletter archive

The newsletter archive can be edited in the same way as any other flat page. To view all of the current newsletter
archive, navigate to the Flat page app in the admin and select /records/newsletters/ under the parent page
filter.

To update the archive, first upload the most recent newsletter and its supplementary document to the Troop 89 Google
Drive. You may direct any questions regarding the upload process to a webmaster or past troop historian.

Once you have uploaded the relevant files, create a section in the newsletter year archive in the following format:
{MONTH} Newsletter & Trip Information
{MONTH} {YEAR} Newsletter
{MONTH} {YEAR} Dates
Supplementary Documents
* Document-1
e Document-2

For each document listed above, highlight the document’s name and then type CTRL+K to insert a link. In the window
that pops up, enter the public URL for the document that you uploaded the the Google Drive. This can be found by
right-clicking on the document in the Drive folder, clicking “Share”, and the copying the shareable link shown.

4.4. Creating and editing static pages 13

Troop 89 Medfield Website

14 Chapter 4. How to Maintain the Troop 89 Website

CHAPTER B

Notes to Webmasters

5.1 Repository Structure

The notable parts of the Troop 89 website repository are listed below:

$ tree -a -L 2 —--dirsfirst

—— assets

img
scss
robots.txt

—— bin

—— docs

— fixtures

—— requirements

base.txt
dev.txt
prod.txt

— static

— templates

— admin

— includes
— troop89

— announcements
—— auth

—— date_range
— events

— flatpages
— Jjson_1d

— settings

— trooporg
— __init___ .py
— urls.py

-— wsgi.py

(continues on next page)

15

Troop 89 Medfield Website

(continued from previous page)

CONTRIBUTING.rst
demo.secrets. json
LICENSE

manage.py

README.rst
requirements.txt
.coveragerc
.secrets. json
.secrets.json.travis
.travis.yml

Briefly, the purpose of each file and directory is as follows:

* assets: A directory containing the site-wide static files

— scss: The site’s Sass stylesheets, which are describe to overall appearance of the site. These files are
compiled to CSS before being served by the production server.

— img: The static media and graphics used by the website.

— robots.txt: A file that contains instructions for web crawlers, such as those used by Google and other
search engines.

bin: A directory containing executable scripts to help manage the site.
docs: The root directory for the site’s Sphinx documentation.
fixture: A directory containing data fixtures for the site’s Django models.
requirements: A directory containing the site’s Python package dependencies, which can be installed using
pip.
— base. txt: Fundamental package requirements for both production and development
— prod.txt: Production-only package requirements
— dev.txt: Development-only package requirements, e.g. debug tools, test coverage

static: The root directory for servable static media. The assets directory and all «/static directories
are copied here to be served by the production server.

templates: The root directory for site-wide Django templates, such as the homepage and the error pages.
troop89: A Python package containing the site’s Django apps and configuration files

— announcements: A Django app for troop announcements.

auth: A Django app for custom user authentication.

— date_range: A helper app for creating models that can reason about ranges of dates.

— events: A Django app for handling event creation and calendar display.

- flatpages: A Django app for customized hierarchical flatpages.

— Json_1d: A helper app for rendering json-1d formatted structured data.

— settings: A Python module for site settings.

— trooporg: A Django app for troop organization (patrols, election terms, positions, etc).
— __init__ .py: The Python package file.

— urls.py: The root url configuration.

— wsgi.py: The WSGI application entry-point.

16

Chapter 5. Notes to Webmasters

https://docs.djangoproject.com/en/2.2/howto/static-files/
https://sass-lang.com/
https://docs.djangoproject.com/en/2.2/howto/initial-data/#providing-data-with-fixtures

Troop 89 Medfield Website

* CONTRIBUTING. rst and README. rst: Files containing documentation for the site’s repository.

* demon.secrets. json: A configuration file for jump-starting a new site instance for development.
* LICENSE: The project license file (MPL-2.0).

* manage.py: A Python script provided by Django for managing the site’s Django apps.

* requirements.txt: A requirements file that references the production package dependencies. It is equiva-
lent to requirements/prod.txt.

* .coveragerc: A configuration file for the coverage Python package, which is used generate test coverage
data.

* .travis.yml and .secrets. json.travis: Configuration files for Travis-CI continuous integration.

* .secrets.json: A configuration file for sensitive data, such as database passwords and encryption keys.
This file is not kept in version control.

5.2 External Services

5.2.1 Travis CI

The Troop 89 website uses Travis CI for continuous integration. Documentation for Travis is available online, though
you will likley never need to worry about changing the configuration.

All configuration for Travis CI is contained in the . travis.yml file.

5.2.2 Coveralls

The Troop 89 website uses Coveralls.io to display its code coverage data. Code coverage analysis is performed by the
Python coverage package. If you have installed the development dependencies, you can generate a manual coverage
report by running the following commands

$ coverage run manage.py test
$ coverage report

Documentation for coverage is available on coverage Read the Docs.

Coverage data is submitted to Coveralls.io by a Travis CI job phase. This step is handled by the coveralls-python
package. Note that the coveralls API key is stored by Travis CI in an environment variable.

5.2.3 Uptime Robot

Uptime Robot periodically monitors the Troop 89 Website for server issues. Uptime statistics are available on the
Troop 89 Website Public Status page.

5.2.4 Read the Docs

Documentation for the Troop 89 website is automatically built and published by ReadTheDocs.org. If you are not
already, you can browse this documentation online through Read the Docs. Otherwise, you can manually build the
documentation using Sphinx by running the following commands.

5.2. External Services 17

https://docs.djangoproject.com/en/2.2/ref/django-admin/
https://travis-ci.com/blueschu/troop89medfield.org
https://docs.travis-ci.com/user/for-beginners/#what-is-continuous-integration-ci
https://docs.travis-ci.com/
https://coveralls.io/github/blueschu/troop89medfield.org
https://pypi.org/project/coverage/
https://coverage.readthedocs.io/en/v4.5.x/
https://coveralls.io/github/blueschu/troop89medfield.org
https://travis-ci.com/blueschu/troop89medfield.org
https://github.com/coveralls-clients/coveralls-python
https://stats.uptimerobot.com/
https://stats.uptimerobot.com/5WPm9SmQZ
https://readthedocs.org/
https://troop89medfieldorg.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/master/

Troop 89 Medfield Website

$ cd docs
$ make html

The documentation will then be available in _build/html. Open the index.html file in a browser to begin
browsing the documentation.

18 Chapter 5. Notes to Webmasters

CHAPTER O

Deployment Considerations

6.1 Django Settings Module

Django uses the environment variable DOANGO_SETTINGS_MODULE to determine which Python module to import
as the Django settings. Per the Django settings docs:

When you use Django, you have to tell it which settings you’re using. Do this by using an environment
variable, DOANGO_SETTINGS_MODULE.

The value of DJANGO_SETTINGS_MODULE should be in Python path syntax, e.g. mysite.
settings. Note that the settings module should be on the Python import search path.

The django-admin utility

When using django—admin, you can either set the environment variable once, or explicitly pass in the
settings module each time you run the utility.

Example (Unix Bash shell):

$ export DJANGO_SETTINGS_MODULE=mysite.settings
$ django-admin runserver

Example (Windows shell):

> set DJANGO_SETTINGS_MODULE=mysite.settings
> django-admin runserver

Use the ——settings command-line argument to specify the settings manually:

$ django-admin runserver —--settings=mysite.settings

—Django settings docs

19

https://docs.djangoproject.com/en/dev/topics/settings/#designating-the-settings
https://www.diveinto.org/python3/your-first-python-program.html#importsearchpath
https://docs.djangoproject.com/en/dev/topics/settings/#designating-the-settings

Troop 89 Medfield Website

6.1.1 Settings in Production

In most cases, you do not have to worry about explicitly setting the Django settings module on the production server.
This is because most entry points for interacting with Django (namely, manage . py and troop89/wsgi.py) will
default to using troop89.settings.prod.

Note that if you use django—admin in place of manage.py when executing Django commands, you will have
to explicitly define the settings module with DJANGO_SETTIGNS_MODULE or the ——settings flag, as explained
above.

6.1.2 Settings in Development

For development, you’ll want to use the t roop89. settings.dev setting module. This module adds some helpful
development tools such as the django debug toolbar and removes some access constraints such as forced redirects to
HTTPS.

This can be explicitly set by setting the DOANGO_SETTINGS_MODULE variable, or by passing the ——settings
flag to manage . py or django—admin, as detailed above.

6.2 Initializing the sites app

The Troop 89 website makes use of the Django sites framework. In order for the website to function, a Site model
with an appropriate domain name needs to be added to the database.

Since the domain name that the Troop 89 websites operates behind will vary between instances, this model is not
created by a database migration.

For development, a default model is provided in a fixture. See Populating the Database for details on how to load it.
For production, you must manually create the Site model. This can be accomplished in three ways:

1. Load a fixture. Created a file (say prod_site. json) with the following contents

[{"model": "sites.site", "pk": 1, "fields": {"domain": "YOUR_DOMAIN_NAME", "name
—": "Troop 89 Website"}}]

where YOUR_DOMAIN_NAME is the domain for the production server. Then, execute the following command:

./manage.py loaddata ./prod_site.json

2. Use the Djano Admin. If your Django instance is already running, you can navigate to
YOUR_DOMAIN_NAME/admin/sites/site/1/change/ to update the default site model with the cor-
rect domain name.

3. Use the Django shell. Start a Django shell session and enter the following:

>>> from django.contrib.sites.models import Site
>>> site = Site(pk=1l, domain='YOUR_DOMAIN_NAME', name='Troop 89 Website')
>>> site.save()

Note that your should not use Site.objects.create (), since you want to override the default site rather
than create a new one.

20 Chapter 6. Deployment Considerations

https://docs.djangoproject.com/en/2.2/ref/contrib/sites/
https://docs.djangoproject.com/en/2.2/ref/django-admin/#shell

Troop 89 Medfield Website

6.3 Database Configuration

The Troop 89 website is designed and tested with a PostgreSQL database server. It is highly recommended that you
continue to use a PostgreSQL database in production to ensure that no compatibility errors occur. At the time of this
writing, Django requires PostregreSQL 9.4 or higher. See the Django database installation docs for further details on
how to run Django with a PostgreSQL backend.

6.4 Redirecting Traffic to HTTPS

The Troop 89 website implements many web security standards to ensure the safety its users’ data. Notably, the Troop
89 website is configured for HTTPS Strict-Transport-Security, which mandates that browsers only access the site over
an encrypted connection.

To ensure compatibility with HSTS standards, the production server should always redirect HTTP traffic to HTTPS.
How this is accomplished will vary between web servers and hosts.

If you are running the Troop 89 website on a Apache server, Webfaction recommends directing all HTTP traffic to a
site that has an . htaccess file with the following rules:

RewriteEngine On

RewriteCond ${HTTP:X-Forwarded-SSL} !on

RewriteCond %${REQUEST_URI} !~/ (.well-known) (/|$)

RewriteRule "~ (.*)$ https://%${HTTP_HOST}%{REQUEST_URI} [R=301,L]

Note: The troop89.settings.prod setting module defines the SECURE_SSIL_REDIRECT option for
Django’s SecurityMiddleware. When this option is set, Django will emit a permanent redirect to HTTPS whenever
it receives a request over HTTP. However, it is recommended that this redirect be performed by the webserver itself
instead of Django. Performing redirects with the webserver will yield better performance and will reduce the risk of
misconfiguration in the future.

6.3. Database Configuration 21

https://www.postgresql.org/
https://docs.djangoproject.com/en/2.2/topics/install/#database-installation
https://observatory.mozilla.org/analyze/troop89medfield.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://docs.webfaction.com/software/static.html#redirecting-from-http-to-https

	Installing the Troop 89 Website
	Fetching the Source
	Installing the Dependencies
	Compiling the Stylesheets
	Adding the Configuration File
	Initializing the Database
	Populating the Database
	Creating the Django Superuser
	Collecting the Static Media
	Updating Local Hostnames (Optional)
	Running the Server

	Running the Tests
	Contributing to the Troop 89 Website
	How Can I Contribute?
	Reporting a Bug
	Requesting a Feature
	Making a Pull Request

	How to Maintain the Troop 89 Website
	Accessing the Admin site
	Posting Announcements
	Creating events
	Creating and editing static pages

	Notes to Webmasters
	Repository Structure
	External Services

	Deployment Considerations
	Django Settings Module
	Initializing the sites app
	Database Configuration
	Redirecting Traffic to HTTPS

